Asuka Morizane

Learn More
We report a simple method, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors. We generated human iPSCs from multiple donors, including two putative human leukocyte antigen (HLA)-homozygous donors who match ∼20% of the Japanese population at major HLA loci; most iPSCs are(More)
Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who(More)
Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA).(More)
The differentiation of dopaminergic (DA) neurons from mouse embryonic stem cells (ESCs) can be efficiently induced, making these neurons a potential source for transplantation as a treatment for Parkinson's disease, a condition characterized by the gradual loss of midbrain DA neurons. One of the major persistent obstacles to the successful implementation of(More)
Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson's disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting(More)
Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinson's disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6-OHDA (6-hydroxydopamine)-lesion rat model of PD. The hESCs were cocultured with PA6(More)
Recent studies have revealed that neural precursor cells can be expanded not only from the subventricular zone and hippocampus but also from other regions of the human embryonic brain. To determine the regional differences of these precursor cells, we divided the brain of a 9-week-old human embryo into four parts, i.e., telencephalon, diencephalon,(More)
Neural induction of midbrain dopaminergic (DA) neurons from embryonic stem (ES) cells can be achieved by culturing them on a bone marrow-derived stromal cell line, PA6, which possesses stromal cell-derived inducing activity (SDIA). The mechanism of SDIA is unknown, but clinical application of ES cell transplantation requires the use of defined factors for(More)
For the safe clinical application of embryonic stem cells (ESCs) for neurological diseases, it is critical to evaluate the tumorigenicity and function of human ESC (hESC)-derived neural cells in primates. We have herein, for the first time, compared the growth and function of hESC-derived cells with different stages of neural differentiation implanted in(More)
We examined the gene expression and DNA methylation of 49 human induced pluripotent stem cells (hiPSCs) and 10 human embryonic stem cells and found overlapped variations in gene expression and DNA methylation in the two types of human pluripotent stem cell lines. Comparisons of the in vitro neural differentiation of 40 hiPSCs and 10 human embryonic stem(More)