Learn More
Query auto-completion (QAC) facilitates user query composition by suggesting queries given query prefix inputs. In 2014, global users of Yahoo! Search saved more than 50% keystrokes when submitting English queries by selecting suggestions of QAC. Users' preference of queries can be inferred during user-QAC interactions, such as dwelling on suggestion lists(More)
Mobile sensing and computing applications usually require timeseries inputs from sensors, such as accelerometers, gyroscopes, and magnetometers. Some applications, such as tracking, can use sensed acceleration and rate of rotation to calculate displacement based on physical system models. Other applications, such as activity recognition, extract manually(More)
Many studies focused on detecting and measuring the security and privacy risks associated with the integration of advertising libraries in mobile apps. These studies consistently demonstrate the abuses of existing ad libraries. However, to fully assess the risks of an app that uses an advertising library, we need to take into account not only the current(More)
The study of online social networks has attracted increasing interest. However, concerns are raised for the privacy risks of user data since they have been frequently shared among researchers, advertisers, and application developers. To solve this problem, a number of anonymization algorithms have been recently developed for protecting the privacy of social(More)
We study the new mobile query auto-completion (QAC) problem to exploit mobile devices’ exclusive signals, such as those related to mobile applications (apps). We propose AppAware, a novel QAC model using installed app and recently opened app signals to suggest queries for matching input prefixes on mobile devices. To overcome the challenge of noisy and(More)
While many studies have been conducted on query understanding, there is limited understanding on why users start searches and how to predict search intent. In this paper, we propose to study this important but less explored problem. Our key intuition is that searches are triggered by different pre-search contexts, but the triggering relations are often(More)
Anonymized user datasets are often released for research or industry applications. As an example, t.qq.com released its anonymized users’ profile, social interaction, and recommendation log data in KDD Cup 2012 to call for recommendation algorithms. Since the entities (users and so on) and edges (links among entities) are of multiple types, the released(More)
We study the composite minimization problem where the objective function is the sum of two convex functions: one is the sum of a finite number of strongly convex and smooth functions, and the other is a general convex function that is non-differentiable. Specifically, we consider the case where the non-differentiable function is block separable and admits a(More)
Recent advances in deep learning motivate the use of deep neutral networks in sensing applications, but their excessive resource needs on constrained embedded devices remain an important impediment. A recently explored solution space lies in compressing (approximating or simplifying) deep neural networks in some manner before use on the device. We propose a(More)