Assaf Zaritsky

Learn More
Classical biological control is the most successfuland promising way to replace chemical pesticides. Thesubspecies israelensis of Bacillusthuringiensis (Bti) is a safe and efficient agent tocontrol mosquito larvae and hence mosquito-bornediseases. One approach to overcome the low efficacyand short half-life in nature of current formulationsof Bti is by(More)
We present evidence that Anabaena PCC7120 (A.7120) strains expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis (Bti) have a strong potential for biotechnological application. Characterization of two 4-year-old recombinant A.7120 clones constructed previously in our laboratory [clone 7 and clone 11, each carrying three Bti(More)
Multi-cellular segmentation of bright field microscopy images is an essential computational step when quantifying collective migration of cells in vitro. Despite the availability of various tools and algorithms, no publicly available benchmark has been proposed for evaluation and comparison between the different alternatives. A uniform framework is(More)
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating(More)
Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this(More)
Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term(More)
The ability of cells to coordinately migrate in groups is crucial to enable them to travel long distances during embryonic development, wound healing and tumorigenesis, but the fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. A novel analytical framework is(More)
We find how collective migration emerges from mechanical information transfer between cells. Local alignment of cell velocity and mechanical stress orientation-a phenomenon dubbed "plithotaxis"-plays a crucial role in inducing coordinated migration. Leader cells at the monolayer edge better align velocity and stress to migrate faster toward the open space.(More)