Assaf Gottlieb

Learn More
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large-scale prediction of drug indications (PREDICT) that can(More)
We propose a novel clustering method that is based on physical intuition derived from quantum mechanics. Starting with given data points, we construct a scale-space probability function. Viewing the latter as the lowest eigenstate of a Schrödinger equation, we use simple analytic operations to derive a potential function whose minima determine cluster(More)
MOTIVATION Many methods have been developed for selecting small informative feature subsets in large noisy data. However, unsupervised methods are scarce. Examples are using the variance of data collected for each feature, or the projection of the feature on the first principal component. We propose a novel unsupervised criterion, based on SVD-entropy,(More)
Inferring drug-drug interactions (DDIs) is an essential step in drug development and drug administration. Most computational inference methods focus on modeling drug pharmacokinetics, aiming at interactions that result from a common metabolizing enzyme (CYP). Here, we introduce a novel prediction method, INDI (INferring Drug Interactions), allowing the(More)
Understanding drugs and their modes of action is a fundamental challenge in systems medicine. Key to addressing this challenge is the elucidation of drug targets, an important step in the search for new drugs or novel targets for existing drugs. Incorporating multiple biological information sources is of essence for improving the accuracy of drug target(More)
We propose a novel clustering method that is an extension of ideas inherent to scale-space clustering and support-vector clustering. Like the latter, it associates every data point with a vector in Hilbert space, and like the former it puts emphasis on their total sum, that is equal to the scalespace probability function. The novelty of our approach is the(More)
The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analyses and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR measurements on 382 individual cells from the(More)
There are significant gaps in our understanding of the pathways by which drugs act. This incomplete knowledge limits our ability to use mechanistic molecular information rationally to repurpose drugs, understand their side effects, and predict their interactions with other drugs. Here, we present DrugRouter, a novel method for generating drug-specific(More)
BACKGROUND Clinical decision support systems assist physicians in interpreting complex patient data. However, they typically operate on a per-patient basis and do not exploit the extensive latent medical knowledge in electronic health records (EHRs). The emergence of large EHR systems offers the opportunity to integrate population information actively into(More)
Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular(More)