Assaf Avihoo

Learn More
BACKGROUND RNAexinv is an interactive java application that performs RNA sequence design, constrained to yield a specific RNA shape and physical attributes. It is an extended inverse RNA folding program with the rationale behind that the generated sequences should not only fold into a desired structure, but they should also exhibit favorable attributes such(More)
BACKGROUND Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or(More)
Conformational switching in the secondary structure of RNAs has recently attracted considerable attention, fostered by the discovery of 'riboswitches' in living organisms. These are genetic control elements that were found in bacteria and offer a unique regulation mechanism based on switching between two highly stable states, separated by an energy barrier(More)
The discovery of natural RNA sensors that respond to a change in the environment by a conformational switch can be utilized for various biotechnological and nanobiotechnological advances. One class of RNA sensors is the riboswitch: an RNA genetic control element that is capable of sensing small molecules, responding to a deviation in ligand concentration(More)
SUMMARY In RNA design problems, it is plausible to assume that the user would be interested in preserving a particular RNA secondary structure motif, or fragment, for biological reasons. The preservation could be in structure or sequence, or both. Thus, the inverse RNA folding problem could benefit from considering fragment constraints. We have developed a(More)
  • N Dromi, A Avihoo, D Barash
  • 2008
The process of designing novel RNA sequences by inverse RNA folding, available in tools such as RNAinverse and InfoRNA, can be thought of as a reconstruction of RNAs from secondary structure. In this reconstruction problem, no physical measures are considered as additional constraints that are independent of structure, aside of the goal to reach the same(More)
Conformational switching in the secondary structure of RNAs has recently attracted considerable attention, fostered by the discovery of 'riboswitches' living organisms. These are genetic control elements that were found in bacteria and offer a unique regulation mechanism based on switching between two highly stable states, separated by an energy barrier(More)
The mechanism of RNA thermometers is a subject of growing interest. Also known as RNA thermosensors, these temperature-sensitive segments of the mRNA regulate gene expression by changing their secondary structure in response to temperature fluctuations. The detection of RNA thermometers in various genes of interest is valuable as it could lead to the(More)