Learn More
Autologous expression of recombinant human proteins in human cells for biomedical research and product development is often hampered by low expression yields limiting subsequent structural and functional analyses. Following RNA and codon optimization, 50 candidate genes representing five classes of human proteins--transcription factors, ribosomal and(More)
Advanced gene delivery techniques can be combined with rational gene design to further improve the efficiency of plasmid DNA (pDNA)-mediated transgene expression in vivo. Herein, we analyzed the influence of intragenic sequence modifications on transgene expression in vitro and in vivo using murine erythropoietin (mEPO) as a transgene model. A single(More)
The development of vaccine components or recombinant therapeutics critically depends on sustained expression of the corresponding transgene. This study aimed to determine the contribution of intragenic CpG content to expression efficiency in transiently and stably transfected mammalian cells. Based upon a humanized version of green fluorescent protein (GFP)(More)
Protein production in cells is dependent on various factors including the underlying nucleotide sequence. Gene optimization is dedicated to improve the expression properties of transgenes by codon adaptation to the individual host, increasing RNA production, stability and nuclear export. However, most gene optimization strategies depend on codon usage(More)
  • 1