Learn More
PURPOSE Our purpose was to investigate the normal volumes of the human entorhinal, perirhinal, and temporopolar cortices on MR imaging studies using a customized program. METHODS We designed a protocol in which the volumes of the entorhinal, perirhinal, and temporopolar cortices were determined from coronal MR images using anatomic landmarks defined on(More)
Recent anterograde and retrograde studies in the rat have provided detailed information on the origin and termination of the interconnections between the amygdaloid complex and the hippocampal formation and parahippocampal areas (including areas 35 and 36 of the perirhinal cortex and the postrhinal cortex). The most substantial inputs to the amygdala(More)
The amygdala is located in the medial aspects of the temporal lobe. In spite of the fact that the amygdala has been implicated in a variety of functions, ranging from attention to memory to emotion, it has not attracted neuroscientists to the same extent as its laminated neighbours, in particular the hippocampus and surrounding cortex. However, recently,(More)
The amygdaloid complex and hippocampal formation mediate functions involving emotion and memory. To investigate the connections that regulate the interactions between these regions, we injected the anterograde tracer Phaseolus vulgaris-leucoagglutinin into various divisions of the lateral, basal, and accessory basal nuclei of the rat amygdala. The heaviest(More)
Although traumatic brain injury is a major cause of symptomatic epilepsy, the mechanism by which it leads to recurrent seizures is unknown. An animal model of posttraumatic epilepsy that reliably reproduces the clinical sequelae of human traumatic brain injury is essential to identify the molecular and cellular substrates of posttraumatic epileptogenesis,(More)
The amygdaloid complex receives sensory information from a variety of sources. A widely held view is that the amygdaloid complex utilizes this information to orchestrate appropriate species-specific behaviors to ongoing experiences. Relatively little is known, however, about the circuitry through which information is processed within the amygdaloid complex.(More)
To understand the organization of inhibitory circuitries in the rat amygdala, the distribution of parvalbumin, calretinin, and calbindin immunoreactivity was investigated in the rat amygdaloid complex. Colocalization of various calcium-binding proteins with the inhibitory transmitter gamma-aminobutyric acid (GABA) was studied by using the mirror technique.(More)
During the past decade, it has become apparent that neural circuits undergo activity-dependent reorganisation. In pathological disorders with recurring episodes of excessive neural activity, such as temporal-lobe epilepsy, brain circuits can undergo continual remodelling. For clinical practice, seizure-induced remodelling implies that after a diagnosis of(More)
Alzheimer's disease is associated with an increased risk of unprovoked seizures. However, the underlying mechanisms of seizure induction remain elusive. Here, we performed video-EEG recordings in mice carrying mutant human APPswe and PS1dE9 genes (APdE9 mice) and their wild-type littermates to determine the prevalence of unprovoked seizures. In two(More)
Spontaneous seizures are the hallmark of human epilepsy but they do not occur in most of the epilepsy models that are used to investigate the mechanisms of epilepsy or to test new antiepileptic compounds. This study was designed to develop a new focal epilepsy model that mimics different aspects of human temporal lobe epilepsy (TLE), including the(More)