Asimina Kazakidi

Learn More
Mice are widely used to investigate atherogenesis, which is known to be influenced by stresses related to blood flow. However, numerical characterization of the haemodynamic environment in the commonly studied aortic arch has hitherto been based on idealizations of inflow into the aorta. Our purpose in this work was to numerically characterize the(More)
The octopus arm is a unique tool that combines strength and flexibility. It can shorten, elongate and bend at any point along its length. To model this behavior, a hyper-redundant manipulator composed of multiple segments is proposed. Each segment is a parallel robotic mechanism with redundant actuation. The kinematics and dynamics of this manipulator are(More)
Inspired by the octopus arm morphology and exploiting recordings of swimming octopus, we investigate the propulsive capabilities of an 8-arm robotic system under various swimming gaits, including arm sculling and arm undulations, for the generation of forward propulsion. A dynamical model of the robotic system, that considers fluid drag contributions(More)
The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as(More)
The octopus uses the arm-swimming behavior primarily for escape, defense, or foraging. This mode of locomotion is comprised of two strokes, with the arms opening slowly and closing rapidly, and generally results in considerable propulsive acceleration. In light of the recent development by our group of an octopus-like eight-arm underwater robot, we are(More)
This paper presents an 8-arm compliant robot, able to propel itself underwater by movements of its arms, either alone or interconnected via a passively-compliant web. The robot is inspired by the morphology and outstanding locomotor capabilities of the octopus, and is fabricated primarily from compliant materials. This robotic swimmer is first investigated(More)
The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific(More)
Arm swimming in the octopus is a mode of locomotion that is used by the animal primarily for hunting, defence, or escape. The motion, in general, is characterized by a fast closing of the arms and a slow opening of the arms, resulting in a considerable propulsive power. The movement has previously been discussed, however the detailed kinematics is still(More)