Learn More
Clinical effects of transcranial electrical stimulation with weak currents are remarkable considering the low amplitude of the electric fields acting on the brain. Elucidating the processes by which small currents affect ongoing brain activity is of paramount importance for the rational design of noninvasive electrotherapeutic strategies and to determine(More)
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modulate cortical excitability. Although increased/decreased excitability under the anode/cathode electrode is nominally associated with membrane depolarization/hyperpolarization, which cellular compartments (somas, dendrites, axons and their terminals) mediate(More)
Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS) with weak current(More)
In this issue, Moliadze and colleagues investigate the role of electrode montage in the induction of acute lasting excitability changes by transcranial Direction Current Stimulation (tDCS) and transcranial Random Noise Stimulation (tRNS); specifically they demonstrate that during weak transcranial electrical stimulation, the position of the ‘‘return”(More)
Transcranial Direct Current Stimulation (tDCS) is investigated for a broad range of neuropsychiatric indications, various rehabilitation applications, and to modulate cognitive performance in diverse tasks. Specificity of tDCS refers broadly to the ability of tDCS to produce precise, as opposed to diffuse, changes in brain function. Practically, specificity(More)
BACKGROUND Arteriovenous graft stenosis leading to thrombosis is a major cause of complications in patients undergoing hemodialysis. Procedural interventions may restore patency but are costly. Although there is no proven pharmacologic therapy, dipyridamole may be promising because of its known vascular antiproliferative activity. METHODS We conducted a(More)
OBJECTIVES Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity currents facilitating or inhibiting spontaneous neuronal activity. tDCS is attractive since dose is readily adjustable by simply changing electrode number, position, size, shape, and current. In the recent past, computational models have been(More)
There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g.(More)
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct(More)
Paxillin is a key player in integrating the actin cytoskeleton with adhesion, and thus is essential to numerous cellular processes, including proliferation, differentiation, and migration in animal cells. PaxB, the Dictyostelium discoideum orthologue of paxillin, has been shown to be important for adhesion and development, much like its mammalian(More)