Asif Iqbal Shawl

Learn More
Reactive oxygen species (ROS) and Ca(2+) signals are closely associated with the pathogenesis of cardiac hypertrophy. However, the cause and effect of the two signals in cardiac hypertrophy remain to be clarified. We extend our recent report by investigating a potential interaction between ROS and Ca(2+) signals utilizing in vitro and in vivo angiotensin II(More)
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger for mobilizing Ca(2+) from intracellular stores in various cell types. Extracellular application of NAADP has been shown to elicit intracellular Ca(2+) signals, indicating that it is readily transported into cells. However, little is known about the functional role of this NAADP(More)
Glucose is a metabolic regulator of insulin secretion from pancreatic β-cells, which is regulated by intracellular Ca(2+) signaling. We and others previously demonstrated that glucose activates CD38/ADP-ribosyl cyclase (ADPR-cyclase) to produce two Ca(2+) second messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP).(More)
Insulin has an autocrine/paracrine role through insulin receptors in pancreatic β-cells. Herein, we show the insulin receptor signaling pathway underlying CD38/ADPR-cyclase activation for NAADP/cADPR formation to induce Ca2+ rise, ultimately resulting in β-cell proliferation. Binding of insulin on insulin receptors leads to the activation of(More)
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional(More)
Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by(More)
Oxothiazolidine carboxylic acid is a prodrug of cysteine that acts as an anti-diabetic agent via insulin secretion and the formation of the Ca2+-mobilizing second messenger, cyclic ADP-ribose (cADPR). Here we show that a hybrid compound, arginine thiazolidine carboxylate (ATC), increases cytoplasmic Ca2+ in pancreatic β-cells, and that the ATC-induced Ca2+(More)
  • 1