Ashwini Oswal

Learn More
Oscillatory activity in the beta frequency band has been shown to be modulated during the preparation and execution of voluntary movements at both cortical and subcortical levels. The exaggeration of beta activity in the basal ganglia of patients with Parkinson's disease has heightened interest in this phenomenon. However, the precise function, if any,(More)
PURPOSE OF THE REVIEW Developments in functional neurosurgery for movement disorders and recent advances in electrophysiological techniques have allowed important insights into the role of oscillations in corticobasal ganglia circuits, both in health and in neurological disease states. Here we review recent developments in our understanding of how(More)
Functional neurosurgical techniques provide a unique opportunity to explore patterns of interaction between the cerebral cortex and basal ganglia in patients with Parkinson's disease (PD). Previous work using simultaneous magnetoencephalographic (MEG) and local field potential (LFP) recordings from the region of the subthalamic nucleus (STNr) has(More)
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal(More)
Movement is accompanied by changes in the degree to which neurons in corticobasal ganglia loops synchronize their activity within discrete frequency ranges. Although two principal frequency bands--beta (15-30 Hz) and gamma (60-90 Hz)--have been implicated in motor control, the precise functional correlates of their activities remain unclear. Local field(More)
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a(More)
BACKGROUND Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. NEW METHOD In this paper, we describe an experimental(More)
OBJECTIVE High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson's disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. METHODS(More)
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its(More)
Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estimation of neuronal activity at a particular location within the brain. The computation of the location specific filter depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number of M/EEG sensors,(More)
  • 1