Ashwin Ittoo

Learn More
An important relation in information extraction is the part-whole relation. Ontological studies mention several types of this relation. In this paper, we show that the traditional practice of initializing minimally-supervised algorithms with a single set that mixes seeds of different types fails to capture the wide variety of part-whole patterns and tuples.(More)
Various supervised algorithms for mining causal relations from large corpora exist. These algorithms have focused on relations explicitly expressed with causal verbs, e.g. “to cause”. However, the challenges of extracting causal relations from domain-specific texts have been overlooked. Domain-specific texts are rife with causal relations that are(More)
Various information extraction (IE) systems for corporate usage exist. However, none of them target the product development and/or customer service domain, despite significant application potentials and benefits. This domain also poses new scientific challenges, such as the lack of external knowledge resources, and irregularities like ungrammatical(More)
The recent decades have witnessed an unprecedented expansion in the volume of unstructured data in digital textual formats. Companies are now starting to recognize the potential economic value lying untapped in their text data repositories and sources, including external ones, such as social media platforms, and internal ones, such as safety reports and(More)
Clustering semantically related terms is crucial for many applications such as document categorization, and word sense disambiguation. However, automatically identifying semantically similar terms is challenging. We present a novel approach for automatically determining the degree of relatedness between terms to facilitate their subsequent clustering. Using(More)