Learn More
Assembly of the Sm-class of U-rich small nuclear ribonucleoprotein particles (U snRNPs) is a process facilitated by the macromolecular survival of motor neuron (SMN) complex. This entity promotes the binding of a set of factors, termed LSm/Sm proteins, onto snRNA to form the core structure of these particles. Nine factors, including the SMN protein, the(More)
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this(More)
In vertebrates, assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs) is mediated by the SMN complex, a macromolecular entity composed of the proteins SMN and Gemins 2-8. Here we have studied the evolution of this machinery using complete genome assemblies of multiple model organisms. The SMN complex has gained complexity in(More)
Spliceosomal Uridine-rich small ribonucleo protein (U snRNP) assembly is an active process mediated by the macromolecular survival motor neuron (SMN) complex. This complex contains the SMN protein and six additional proteins, named Gemin2-7, according to their localization to nuclear structures termed gems. Here, we provide biochemical evidence for the(More)
Distal spinal muscular atrophy type 1 (DSMA1) is an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. In this disease, the degeneration of alpha-motoneurons is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2). This protein has been implicated in DNA replication, pre-mRNA(More)
The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic(More)
The survival motor neuron (SMN) complex is a macromolecular machine comprising 9 core proteins: SMN, Gemins2-8 and unrip in vertebrates. It performs tasks in RNA metabolism including the cytoplasmic assembly of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). The SMN complex also localizes to the nucleus, where it accumulates in Cajal Bodies(More)
The assembly of the Sm-class of uridine-rich small nuclear ribonucleoproteins (U snRNPs), albeit spontaneous in vitro, has recently been shown to be dependent on the aid of a large number of assisting factors in vivo. These factors are organized in two interacting units termed survival motor neuron (SMN)- and protein arginine methyltransferase 5(More)
Mitogen-activated protein (MAP) kinases phosphorylate the estrogen receptor and activate transcription from estrogen receptor-regulated genes. Here we examine potential interactions between the MAP kinase cascade and androgen receptor-mediated gene regulation. Specifically, we have studied the biological effects of mitogen-activated protein kinase kinase(More)
Degenerated motor neurons in the spinal cord are the pathological hallmark of spinal muscular atrophy (SMA). SMA is caused by mutations in the ubiquitously expressed survival motor neuron 1 (SMN1) gene, which lead to reduced levels of functional SMN protein. Many different functions have been assigned to SMN, including assembly of ribonucleoproteins (RNPs),(More)