Learn More
Bottlenecks in population size reduce genetic diversity and increase inbreeding, which can lead to inbreeding depression. It is thus puzzling how introduced species, which typically pass through bottlenecks, become such successful invaders. However, under certain theoretical conditions, bottlenecks of intermediate size can actually purge the alleles that(More)
After being used as a biocontrol agent against aphids for decades without harmful consequences, the Asian harlequin ladybird Harmonia axyridis has suddenly become an invasive pest on a worldwide scale. We investigate the impact of captive breeding on several traits of this ladybird such as genetic diversity, fecundity, survival and pathogen resistance. We(More)
Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in(More)
Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is(More)
Biological invaders have long been hypothesized to exhibit the fast end of the life-history spectrum, with early reproduction and a short lifespan. Here, we examine the rapid evolution of life history within the harlequin ladybird Harmonia axyridis. The species, once used as a biological control agent, is now a worldwide invader. We show that biocontrol(More)
Reproductive strategy affects population dynamics and genetic parameters that can, in turn, affect evolutionary processes during the course of biological invasion. Life-history traits associated with reproductive strategy are therefore potentially good candidates for rapid evolutionary shifts during invasions. In a series of mating trials, we examined mixed(More)
Understanding biological invasion is currently one of the main scientific challenges for ecologists. The introduction process is crucial for the success of an invasion, especially when it involves a demographic bottleneck. A small introduced population is expected to face a higher risk of extinction before the first stage of invasion is complete if(More)
  • 1