Ashoka Visweswara Sathanur

Learn More
The thermal gradients existing in high-performance circuits may significantly affect their timing behavior, in particular by increasing the skew of the clock net and/or altering hold/setup constraints, possibly causing the circuit to operate incorrectly. The knowledge of the spatial distribution of temperature can be used to properly design a clock network(More)
In this paper we focus on leakage reduction through automatic insertion of sleep transistors using a row-based granularity. In particular, we tackle here the two main issues involved in this methodology: (i) Clustering and (ii) the interfacing of power-gated and non power-gated regions within the same block. The clustering algorithm automatically selects an(More)
Nanometer CMOS scaling has resulted in greatly increased circuit variability, with extremely adverse consequences on design predictability and yield. A number of recent works have focused on adaptive post-fabrication tuning approaches to mitigate this problem. Adaptive Body Bias (ABB) is one of the most successful tuning "knobs" in use today in(More)
Near-Threshold Circuits achieve ultra-low energy operating with significant performance improvement and noise immunity as compared to sub-threshold circuits. However, near-threshold circuit performance is highly sensitive to static and dynamic threshold voltage variations. This makes designing circuits for a target performance very difficult, and(More)
Row-based power-gating has recently emerged as a meet-in-the-middle sleep transistor insertion paradigm between cell-level and block-level granularity, in which each layout row defines the unit of gating, and different rows can be clustered and share the same sleep transistor. Previous works, however, assume the availability of a single virtual ground(More)
Sleep transistor insertion is a key step in low power design methodologies for nanometer CMOS. In the clustered sleep transistor approach, a single sleep transistor is shared among a number of gates and it must be sized according to the maximum current that can be injected onto the virtual ground by the gates in the cluster. A conservative (upper bound)(More)