Ashley Tarokh

Learn More
Reliable segmentation of cell nuclei from three dimensional (3D) microscopic images is an important task in many biological studies. We present a novel, fully automated method for the segmentation of cell nuclei from 3D microscopic images. It was designed specifically to segment nuclei in images where the nuclei are closely juxtaposed or touching each(More)
We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This(More)
Reconstruction of the central surface representation of the cerebral cortex is an important means to study the structure and function of the human brain. In this paper, we propose a novel method based on an elastic transform vector field to drive a deformable model for the reconstruction of the central cortical surface. Both simulated brain cortexes and(More)
Quantification of cells is a critical step towards the assessment of cell fate in neurological disease or developmental models. Here, we present a novel cell detection method for the automatic quantification of zebrafish neuronal cells, including primary motor neurons, Rohon–Beard neurons, and retinal cells. Our method consists of four steps. First, a(More)
The human brain cortex is a highly convoluted sheet. Mapping of the cortical surface into a canonical coordinate space is an important tool for the study of the structure and function of the brain. Here, we present a technique based on least-square conformal mapping with spring energy for the mapping of the cortical surface. This method aims to reduce the(More)
  • 1