Ashlee J Howarth

  • Citations Per Year
Learn More
Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These(More)
A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and(More)
The photooxidation of a mustard-gas simulant, 2-chloroethyl ethyl sulfide (CEES), is studied using a porphyrin-based metal-organic framework (MOF) catalyst. At room temperature and neutral pH value, singlet oxygen is generated by PCN-222/MOF-545 using an inexpensive and commercially available light-emitting diode. The singlet oxygen produced by(More)
Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular(More)
A pyrene-based metal-organic framework (MOF) NU-1000 was used as a heterogeneous photocatalyst for the degradation of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). Using irradiation from a commercially available and inexpensive ultraviolet (UV) light-emitting diode (LED), singlet oxygen (1O2) is generated by NU-1000 and selectively oxidizes(More)
A halochromic Zr6-based metal-organic framework is synthesized using solvent-assisted linker incorporation (SALI) with NU-1000 as a platform and carboxylnaphthofluorescein as a pH sensitive ligand. The functionalized MOF can catalytically detoxify nerve agent simulants in addition to visually detecting the acidic byproduct produced during detoxification.
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is(More)
Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic(More)
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both(More)
Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent(More)