Ashlee J Howarth

Learn More
A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and(More)
Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular(More)
A Zr-based MOF, NU-1000, comprised of Zr6 nodes and tetratopic pyrene-containing linkers is studied for adsorption and extraction of SO4(2-) from water. The adsorption capacity and uptake time of SO4(2-) in NU-1000 is determined at varying concentrations to give an overall maximum adsorption capacity of 56 mg SO4(2-) per g of MOF. Selective adsorption of(More)
A halochromic Zr6-based metal-organic framework is synthesized using solvent-assisted linker incorporation (SALI) with NU-1000 as a platform and carboxylnaphthofluorescein as a pH sensitive ligand. The functionalized MOF can catalytically detoxify nerve agent simulants in addition to visually detecting the acidic byproduct produced during detoxification.
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both(More)
The synthesis, structures and photophysical properties of a series of bis-cyclometallated Ir(iii) complexes bearing phenylpyrazole (ppz) cyclometallating ligands and phenanthroline-based ancillary ligands containing thienyl- and bithienylamido groups are reported. All complexes are emissive in solution, while in PMMA films strong emission is observed from(More)
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is(More)
Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic(More)