Learn More
The goal of deconvolution is to recover an image x from its convolution with a known blurring function. This is equivalent to inverting the linear system y = Hx. In this paper, we consider the generalized problem where the system matrix H is an arbitrary nonnegative matrix. Linear inverse problems can be solved by adding a regularization term to impose(More)
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much(More)
CVPR 2006, contained a serious error. The authors inadvertently did not acknowledge Vladimir Kolmogorov for a significant contribution: in early 2005, he introduced the 1984 construction of Hammer et al. into computer vision, and explained it to us. For a very clear description of the Hammer et al. construction, see: V. Kolmogorov and C. Rother, "(More)
Quantitative assessment of myelination is important for characterizing tissue damage and evaluating response to therapy in white matter diseases such as multiple sclerosis. Conventional multicomponent T(2) relaxometry based on the two-dimensional (2D) multiecho spin echo sequence is a promising method to measure myelin water fraction, but its clinical(More)
Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral(More)
Patterns of dementia are known to fall into dissociated but dispersed brain networks, suggesting that the disease is transmitted along neuronal pathways rather than by proximity. This view is supported by neuropathological evidence for "prion-like" transsynaptic transmission of disease agents like misfolded tau and beta amyloid. We mathematically model this(More)
Existing parallel MRI methods are limited by a fundamental trade-off in that suppressing noise introduces aliasing artifacts. Bayesian methods with an appropriately chosen image prior offer a promising alternative; however, previous methods with spatial priors assume that intensities vary smoothly over the entire image, resulting in blurred edges. Here we(More)
Both the size and location of injury in the brain influences the type and severity of cognitive or sensorimotor dysfunction. However, even with advances in MR imaging and analysis, the correspondence between lesion location and clinical deficit remains poorly understood. Here, structural and diffusion images from 14 healthy subjects are used to create(More)
Minimization of the wiring cost of white matter fibers in the human brain appears to be an organizational principle. We investigate this aspect in the human brain using whole brain connectivity networks extracted from high resolution diffusion MRI data of 14 normal volunteers. We specifically address the question of whether brain anatomy determines its(More)
Imaging of water diffusion using magnetic resonance imaging has become an important noninvasive method for probing the white matter connectivity of the human brain for scientific and clinical studies. Current methods, such as diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) such as q-ball imaging, and diffusion spectrum(More)