Ashish A Kulkarni

Learn More
Protein-glycan interactions are typically very weak, and avid binding is achieved when proteins express multiple glycan binding sites. Shiga toxin (Stx) uses glycan receptors to enter cells. Stx has five identical binding subunits, each with three nonidentical glycan binding sites. Previous studies examined binding to biantennary glycans expressing Pk(More)
Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae cause life-threatening conditions that include hemolytic uremic syndrome (HUS), kidney failure, and neurological complications. Cellular entry is mediated by the B-subunit of the AB(5) toxin, which recognizes cell surface glycolipids present in lipid raft-like structures. We(More)
Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the molecular level could lead to the development of novel therapeutics(More)
We have developed a simple, rapid, and sensitive carbohydrate-based magnetic relaxation switch assay for the detection of carbohydrate binding proteins. This technique was used to detect lectins and toxins that are known to bind to specific carbohydrates. Lectins that bind to the same carbohydrate displayed differential aggregation profiles because of(More)
A label-free biosensor for Escherichia coli (E. coli) ORN 178 based on faradaic electrochemical impedance spectroscopy (EIS) was developed. α-Mannoside or β-galactoside was immobilized on a gold disk electrode using a self-assembled monolayer (SAM) via a spacer terminated in a thiol functionality. Impedance measurements (Nyquist plot) showed shifts due to(More)
  • 1