Ashika Verghese

Learn More
Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is(More)
UNLABELLED The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have(More)
Paying attention improves performance, but is this improvement regardless of what we attend to? We explored the differences in performance between attending to a location and attending to a feature when perceiving global motion. Attention was first cued to one of four locations that had coherently moving dots, while the remaining three had randomly moving(More)
Inhibition of irrelevant and conflicting information and responses is crucial for goal-directed behaviour and adaptive functioning. In the Simon task, for example, responses are slowed if their mappings are spatially incongruent with stimuli that must be discriminated on a nonspatial dimension. Previous work has shown that practice with incongruent spatial(More)
Practice or training on a particular task often yields gains for the trained task; however, the extent to which these benefits generalize to other stimuli/tasks is contentious. It has been suggested that behavioral decision-making/response selection training may enhance temporal visual attention, as measured using the attentional blink (AB) paradigm. Here,(More)
  • 1