Learn More
Bovine lactoferrin has been shown to reduce the levels of glucose in both normal subjects and non-insulin dependent diabetic patients. The binding studies have shown that various sugar molecules interact with lactoferrin indicating the presence of a sugar-binding site in the protein. Structural studies have revealed that the sugar-binding site is located in(More)
Peptidyl-tRNA hydrolase (Pth) catalyses the release of tRNA and peptide components from peptidyl-tRNA molecules. Pth from a Gram-positive bacterium Streptococcus pyogenes (SpPth) was cloned, expressed, purified and crystallised. Three-dimensional structure of SpPth was determined by X-ray crystallography at 2.19 Å resolution. Structure determination showed(More)
Lactoferrin was purified from human seminal fluid obtained from the semen bank. The purified samples were saturated with Fe3+ and crystallized by microdialysis method. The crystals belong to orthorhombic space group P21212, with a = 55.9 Angstrom. b = 97.2 Angstrom, c = 156.1 Angstrom and Z = 4. The structure was determined with molecular replacement method(More)
Lactoperoxidase (LPO) is a member of the mammalian peroxidase superfamily. It catalyzes the oxidation of thiocyanate and halides. Freshly isolated and purified samples of caprine LPO were saturated with ammonium iodide and crystallized using 20% polyethylene glycol 3350 in a hanging drop vapor diffusion setup. The structure has been determined using X-ray(More)
The crystal structure of the zinc-saturated C-terminal lobe of bovine lactoferrin has been determined at 2.0 A resolution using crystals stabilized at pH 3.8. This is the first metal-saturated structure of any functional lactoferrin at such a low pH. Purified samples of proteolytically generated zinc-saturated C-terminal lobe were crystallized from 0.1 M(More)
During the course of protein synthesis in the cell, the translation process is often terminated due to various reasons. As a result, peptidyl-tRNA molecules are released which are toxic to the cell as well reducing the availability of free amino acid and tRNA molecules for the required protein synthesis in the cell. Such a situation is corrected by an(More)
A novel plant protein isolated from the underground bulbs of Scadoxus multiflorus, xylanase and alpha-amylase inhibitor protein (XAIP), inhibits two structurally and functionally unrelated enzymes: xylanase and alpha-amylase. The mature protein contains 272 amino acid residues which show sequence identities of 48% to the plant chitinase hevamine and 36% to(More)
Nonsteroidal antiinflammatory drugs (NSAIDs), due to their good efficacy in the treatment of pain, inflammation, and fever, are among the most prescribed class of medicines in the world. The main drawback of NSAIDs is that they induce gastric complications such as peptic ulceration and injury to the intestine. Four NSAIDs, indomethacin, diclofenac, aspirin,(More)
Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well(More)
Three COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs), etoricoxib, parecoxib, and nimesulide are widely prescribed against inflammatory conditions. However, their long term administration leads to severe conditions of cardiovascular complications and gastric ulceration. In order to minimize these side effects, C-terminal half (C-lobe) of(More)