Learn More
We present a new algorithm for removing motion blur from a single image. Our method computes a deblurred image using a unified probabilistic model of <i>both</i> blur kernel estimation and unblurred image restoration. We present an analysis of the causes of common artifacts found in current deblurring methods, and then introduce several novel terms within(More)
Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as(More)
We describe an interactive, computer-assisted framework for combining parts of a set of photographs into a single composite picture, a process we call "digital photomontage." Our framework makes use of two techniques primarily: graph-cut optimization, to choose good seams within the constituent images so that they can be combined as seamlessly as possible;(More)
We present a robust and efficient approach to video stabilization that achieves high-quality camera motion for a wide range of videos. In this article, we focus on the problem of transforming a set of input 2D motion trajectories so that they are both smooth and resemble visually plausible views of the imaged scene; our key insight is that we can achieve(More)
We describe a technique that transforms a video from a hand-held video camera so that it appears as if it were taken with a directed camera motion. Our method adjusts the video to appear as if it were taken from nearby viewpoints, allowing 3D camera movements to be simulated. By aiming only for perceptual plausibility, rather than accurate reconstruction,(More)
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While these problems can be elegantly expressed in the language of Markov Random Fields (MRF's), the resulting energy minimization problems(More)
Any projection of a 3D scene into a wide-angle image unavoidably results in distortion. Current projection methods either bend straight lines in the scene, or locally distort the shapes of scene objects. We present a method that minimizes this distortion by adapting the projection to content in the scene, such as salient scene regions and lines, in order to(More)
We describe a hierarchical approach to improving the efficiency of <i>gradient-domain compositing</i>, a technique that constructs seamless composites by combining the gradients of images into a vector field that is then integrated to form a composite. While gradient-domain compositing is powerful and widely used, it suffers from poor scalability. Computing(More)
This paper studies color compatibility theories using large datasets, and develops new tools for choosing colors. There are three parts to this work. First, using on-line datasets, we test new and existing theories of human color preferences. For example, we test whether certain hues or hue templates may be preferred by viewers. Second, we learn(More)
This paper presents a method for measuring the similarity in style between two pieces of vector art, independent of content. Similarity is measured by the differences between four types of features: color, shading, texture, and stroke. Feature weightings are learned from crowdsourced experiments. This perceptual similarity enables style-based search. Using(More)