Learn More
We investigated the supramolecular structure of the SHIGELLA: type III secretion machinery including its major components. Our results indicated that the machinery was composed of needle and basal parts with respective lengths of 45.4 +/- 3.3 and 31.6 +/- 0.3 nm, and contained MxiD, MxiG, MxiJ and MxiH. spa47, encoding a putative F(1)-type ATPase, was(More)
Enteropathogenic Escherichia coli (EPEC) secretes many Esps (E. coli-secreted proteins) and effectors via the type III secretion (TTS) system. We previously identified a novel needle complex (NC) composed of a basal body and a needle structure containing an expandable EspA sheath-like structure as a central part of the EPEC TTS apparatus. To further(More)
Enteropathogenic Escherichia coli (EPEC) delivers a subset of effectors into host cells via a type III secretion system. Here we show that the type III effector EspG and its homologue EspG2 alter epithelial paracellular permeability. When MDCK cells were infected with wild-type (WT) EPEC, RhoA was activated, and this event was dependent on the delivery of(More)
The virulence of the human pathogen Shigella flexneri is dependent on both chromosome- and large-virulence-plasmid-encoded genes. A kanamycin resistance cassette mutation in the miaA gene (miaA::Km Sma), which encodes the tRNA N6-isopentyladenosine (i6A37) synthetase and is involved in the first step of the synthesis of the modified nucleoside(More)
We isolated a small multicopy cryptic plasmid, pNHK101, from Thermus sp. TK10 for use as a replicon of a Thermus expression vector. The nucleotide sequence of pNHK101 revealed that this plasmid was 1564bp long, with a total G+C content of 66.8%, which was in agreement with that of Thermus genomic DNA. The sequence did not show any significant similarities(More)
It is currently unclear whether Shigella kills its phagocytic host cells by apoptosis or necrosis. This study shows that rapid necrosis ensues in macrophage-like cell lines (U937 cells differentiated by all-trans-retinoic acid and J774 cells) infected with the Shigella flexneri strain YSH6000. The infected cells rapidly lose membrane integrity, a typical(More)
Enteropathogenic Escherichia coli delivers a subset of effectors into host cells via a type III secretion system, and this step is required for the progression of disease. Here, we show that the type III effectors, EspG and its homolog Orf3, trigger actin stress fiber formation and the destruction of the microtubule networks beneath adherent bacteria. Both(More)
The type III secretion system (T3SS) plays a key role in the exertion of full virulence by Bordetella bronchiseptica. However, little is known about the environmental stimuli that induce expression of T3SS genes. Here, it is reported that iron starvation is a signal for T3SS gene expression in B. bronchiseptica. It was found that, when B. bronchiseptica is(More)
Shigella infects residential macrophages via the M cell entry, after which the pathogen induces macrophage cell death. The bacterial strategy of macrophage infection, however, remains largely speculative. Wild type Shigella flexneri (YSH6000) invaded macrophages more efficiently than the noninvasive mutants, where YSH6000 induced large scale lamellipodial(More)
Shigella deliver a subset of effectors into the host cell via the type III secretion system, that stimulate host cell signal pathways to modulate the actin dynamics required for invasion of epithelial cells. Here we show that one of the Shigella effectors, called VirA, can interact with tubulin to promote microtubule (MT) destabilization, and elicit(More)