Learn More
ALS2 mutations account for a number of recessive motor neuron diseases including forms of amyotrophic lateral sclerosis, primary lateral sclerosis and hereditary spastic paraplegia. Although computational predictions suggest that ALS2 encodes a protein containing multiple guanine nucleotide exchange factor (GEF) domains [RCC1-like domain (RLD), the Dbl(More)
ALS2/alsin is a member of guanine nucleotide exchange factors for the small GTPase Rab5 (Rab5GEFs), which act as modulators in endocytic pathway. Loss-of-function mutations in human ALS2 account for a number of juvenile recessive motor neuron diseases (MNDs). However, the normal physiological role of ALS2 in vivo and the molecular mechanisms underlying(More)
ALS2 is a causative gene for a juvenile autosomal recessive form of motor neuron diseases (MNDs), including amyotrophic lateral sclerosis 2 (ALS2), juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic paralysis. These disorders are characterized by ascending degeneration of the upper motor neurons with or without lower motor(More)
Mutations in the ALS2 gene have been known to account for a juvenile recessive form of amyotrophic lateral sclerosis (ALS2), a rare juvenile recessive form of primary lateral sclerosis, and a form of hereditary spastic paraplegia (HSP), indicating that the ALS2 protein is essential for the maintenance of motor neurons. Recently, we have demonstrated that(More)
Mutations in the ALS2 gene cause a number of recessive motor neuron diseases, indicating that the ALS2 protein (ALS2/alsin) is vital for motor neurons. ALS2 acts as a guanine nucleotide exchange factor (GEF) for Rab5 (Rab5GEF) and is involved in endosome dynamics. However, the spatiotemporal regulation of the ALS2-mediated Rab5 activation is unclear. Here(More)
We describe here cDNA cloning of an orphan nuclear receptor family member, tFZR1, which has a FTZ-F1 box. The amino acid sequences of the zinc finger domain and the FTZ-F1 box has 92.8% and 100% identity, respectively, with those of zebrafish FTZ-F1. On the other hand, the overall homology between tFZR1 and zebrafish FTZ-F1 is low (33.0%). The results(More)
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of incurable motor neuron diseases (MNDs) characterized by a selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately 5-10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their(More)
Loss of ALS2/alsin function accounts for several recessive motor neuron diseases. ALS2 is a Rab5 activator and its endosomal localization is regulated by Rac1 via macropinocytosis. Here, we show that the pathogenic missense ALS2 mutants fail to be localized to Rac1-induced macropinosomes as well as endosomes, which leads to loss of the ALS2 function as a(More)
ALS2, the causative gene product for juvenile recessive amyotrophic lateral sclerosis (ALS2), is a guanine-nucleotide exchange factor for the small GTPase Rab5. Here, we report a novel ALS2 homologous gene, ALS2 C-terminal like (ALS2CL), which encodes a 108-kD ALS2CL protein. ALS2CL exhibited a specific but a relatively weak Rab5-GEF activity with(More)
ALS2, the causative gene product for a number of recessive motor neuron diseases, is a guanine-nucleotide exchange factor for Rab5, and acts as a modulator for endosome dynamics. Recently, we have identified a novel ALS2 homolog, ALS2CL, which is highly homologous to the C-terminal half of ALS2. In this study, we investigate the molecular features of ALS2CL(More)