Learn More
PMN leukocytes are the most abundant leukocytes in the circulation and play an important role in host defense. PMN leukocyte recruitment and inflammatory responses at sites of infection are critical components in innate immunity. Although inflammation and coagulation are known to have bidirectional relationships, little is known about the interaction(More)
Autophagy is an essential cellular mechanism for cell homeostasis and survival by which damaged cellular proteins are sequestered in autophagosomal vesicles and cleared through lysosomal machinery. The autophagy pathway also plays an important role in immunity and inflammation via pathogen clearance mechanisms mediated by immune cells, including macrophages(More)
Regulation of the platelet actin cytoskeleton by the Rho family of small GTPases is essential for the proper maintenance of hemostasis. However, little is known about how intracellular platelet activation from Rho GTPase family members, including Rac, Cdc42, and Rho, translate into changes in platelet actin structures. To better understand how Rho family(More)
Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in(More)
BACKGROUND Recombinant T cell receptor ligands (RTLs) are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS). RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used(More)
Lysophosphatidylcholine (LPC) is one of the major lysophospholipids mainly generated by phospholipase A2 (PLA2)-mediated hydrolysis of phosphatidylcholine (PC). We previously found that LPC displays neurotrophin-like activity in the rat pheochromocytoma PC12 cells and in cerebellar granule neurons, but the molecular mechanism remains unclear. We report here(More)
BACKGROUND AND PURPOSE Infections with respiratory viruses induce exacerbations of asthma, increase acetylcholine release and potentiate vagally mediated bronchoconstriction by blocking inhibitory M₂ muscarinic receptors on parasympathetic neurons. Here we test whether virus-induced M₂ receptor dysfunction and airway hyperresponsiveness are tumour necrosis(More)
Hemostasis is dependent upon the successful recruitment and activation of blood platelets to the site of a breach in the vasculature. Platelet activation stimulates the rapid reorganization of the cortical actin cytoskeleton, resulting in the transformation of platelets from biconcave disks to fully spread cells. During this process, platelets extend(More)
OBJECTIVE Rho GTPase proteins play a central role in regulating the dynamics of the platelet actin cytoskeleton. Yet, little is known regarding how Rho GTPase activation coordinates platelet activation and function. In this study, we aimed to characterize the role of the Rho GTPase effector, p21 activated kinase (PAK), in platelet activation, lamellipodia(More)
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are(More)