Learn More
DNA microarray analysis has previously revealed that hspA, which encodes a small heat-shock protein, is the second most highly expressed gene under salt stress in Synechocystis sp. strain PCC 6803. Consequently, an hspA deletion mutant was studied under various salt stresses in order to identify a potential role of HspA in salt stress management. The mutant(More)
The heat shock response is generally characterized by an immediate, intense, and transient activation of gene expression, resulting in the elevated synthesis of heat shock proteins. We found that light modulates these characteristics of the heat shock response in cyanobacteria. Light accelerated the heat induction of htpG, groESL1, groEL2, and hspA, in(More)
In toxigenic Vibrio cholerae, cholera toxin is encoded by the CTX prophage, which consists of a core region carrying ctxAB genes and genes required for CTXPhi morphogenesis, and an RS2 region encoding regulation, replication, and integration functions. Integrated CTXPhi is often flanked by another genetic element known as RS1 which carries all open reading(More)
Enterohemorrhagic Escherichia coli (EHEC) O157 causes severe food-borne illness in humans. The chromosome of O157 consists of 4.1 Mb backbone sequences shared by benign E. coli K-12, and 1.4 Mb O157-specific sequences encoding many virulence determinants, such as Shiga toxin genes (stx genes) and the locus of enterocyte effacement (LEE). Non-O157 EHECs(More)
Toxigenic Vibrio cholerae strains are lysogens of CTXPhi, a filamentous phage which encodes cholera toxin. The receptor for CTXPhi for invading V. cholerae cells is the toxin-coregulated pilus (TCP), the genes for which reside in a larger genetic element, the TCP pathogenicity island. We analyzed 146 CTX-negative strains of V. cholerae O1 or non-O1 isolated(More)
In toxigenic Vibrio cholerae, the CTX genetic element which carries the genes for cholera toxin (CT) is the genome of a lysogenic bacteriophage (CTXPhi). Clinical and environmental strains of V. cholerae O1 or O139 and stools that were culture positive for cholera were analyzed to study the induction and transmission of CTXPhi. To our knowledge, this is the(More)
In order to assess the extent of genomic diversity among Vibrio cholerae O139 strains, restriction fragment length polymorphisms in two genetic loci, rrn and ctx, were studied. Analysis of 144 strains isolated from different regions of Bangladesh and India between 1992 and 1998 revealed the presence of at least six distinct ribotypes (B-I through B-VI) of(More)
Sixty-four representative strains of Vibrio cholerae O139 were analyzed, to re-examine the origin of this serogroup. Ribotyping differentiated the strains into 3 HindIII and 7 BglI ribotypes. One HindIII and 5 BglI ribotypes were shared by all toxigenic O139 strains. Of 6 nontoxigenic O139 strains, 3 shared ribotypes with the toxigenic strains, carried(More)
Vibrio cholerae O139 Bengal initially appeared in the southern coastal region of Bangladesh and spread northward, causing explosive epidemics during 1992 and 1993. The resurgence of V. cholerae O139 during 1995 after its transient displacement by a new clone of El Tor vibrios demonstrated rapid changes in the epidemiology of cholera in Bangladesh. A recent(More)
The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXPhi), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXPhi. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to(More)