Learn More
Memory and synaptic plasticity exhibit distinct temporal phases, with long-lasting forms distinguished by their dependence on macromolecular synthesis. Prevailing models for the molecular mechanisms underlying long-lasting synaptic plasticity have largely focused on transcriptional regulation. However, a growing body of evidence now supports a crucial role(More)
Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits(More)
Long-term memory and its putative synaptic correlates the late phases of both long-term potentiation and long-term depression require enhanced protein synthesis. On the basis of recent data on translation-dependent synaptic plasticity and on the supralinear effect of activation of nearby synapses on action potential generation, we propose a model for the(More)
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However,(More)
The late-phase of long-term potentiation (L-LTP), the cellular correlate of long-term memory, induced at some synapses facilitates L-LTP expression at other synapses receiving stimulation too weak to induce L-LTP by itself. Using glutamate uncaging and two-photon imaging, we demonstrate that the efficacy of this facilitation decreases with increasing time(More)
Although neurotrophins have been postulated to have antidepressant properties, their effect on anxiety is not clear. We find that transgenic overexpression of the neurotrophin BDNF has an unexpected facilitatory effect on anxiety-like behavior, concomitant with increased spinogenesis in the basolateral amygdala. Moreover, anxiogenesis and amygdalar(More)
Learning and memory are fundamental brain functions affected by dietary and environmental factors. Here, we show that increasing brain magnesium using a newly developed magnesium compound (magnesium-L-threonate, MgT) leads to the enhancement of learning abilities, working memory, and short- and long-term memory in rats. The pattern completion ability was(More)
A central focus of aging research is to determine how calorie restriction (CR) extends lifespan and delays diseases of aging. SIRT1, the mammalian ortholog of Sir2 in yeast, is a longevity factor which mediates dietary restriction in diverse species. In addition, SIRT1 plays a protective role in several models of neurodegenerative disease. We tested the(More)
Fragile X syndrome (FXS) is the most common inherited form of autism and intellectual disability and is caused by the silencing of a single gene, fragile X mental retardation 1 (Fmr1). The Fmr1 KO mouse displays phenotypes similar to symptoms in the human condition--including hyperactivity, repetitive behaviors, and seizures--as well as analogous(More)
  • 1