Arvind Ganesh

Learn More
Principal component analysis is a fundamental operation in computational data analysis, with myriad applications ranging from web search to bioinformatics to computer vision and image analysis. However, its performance and applicability in real scenarios are limited by a lack of robustness to outlying or corrupted observations. This paper considers the(More)
This paper studies the problem of simultaneously aligning a batch of linearly correlated images despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain transformations such that the matrix of transformed images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images.(More)
This paper studies algorithms for solving the problem of recovering a low-rank matrix with a fraction of its entries arbitrarily corrupted. This problem can be viewed as a robust version of classical PCA, and arises in a number of application domains, including image processing, web data ranking, and bioinformatic data analysis. It was recently shown that(More)
Principal component analysis is a fundamental operation in computational data analysis, with myriad applications ranging from web search to bioinformatics to computer vision and image analysis. However, its performance and applicability in real scenarios are limited by a lack of robustness to outlying or corrupted observations. This paper considers the(More)
In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional local features such as edges and corners as well as many(More)
We present a new approach to robustly solve photometric stereo problems. We cast the problem of recovering surface normals from multiple lighting conditions as a problem of recovering a low-rank matrix with both missing entries and corrupted entries, which model all types of non-Lambertian effects such as shadows and specularities. Unlike previous(More)
Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are(More)
`1-minimization solves the minimum `1-norm solution to an underdetermined linear system y = Ax. It has recently received much attention, mainly motivated by the new compressive sensing theory that shows that under certain conditions an `1-minimization solution is also the sparsest solution to that system. Although classical solutions to `1-minimization have(More)
We consider the problem of recovering a target matrix that is a superposition of low-rank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured high-dimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant low-rank recovery. We(More)
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem.(More)