Learn More
Formins, characterized by formin homology domains FH1 and FH2, are required to assemble certain F-actin structures including actin cables, stress fibers, and the contractile ring. FH1FH2 in a recombinant fragment from a yeast formin (Bni1p) nucleates actin filaments in vitro. It also binds to the filament barbed end where it appears to act as a "leaky"(More)
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition(More)
In metazoans, the Ras-Raf-MEK (mitogen-activated protein-kinase kinase)-ERK (extracellular signal-regulated kinase) signalling pathway relays extracellular stimuli to elicit changes in cellular function and gene expression. Aberrant activation of this pathway through oncogenic mutations is responsible for a large proportion of human cancer. Kinase(More)
The complexity of cancer has led to recent interest in polypharmacological approaches for developing kinase-inhibitor drugs; however, optimal kinase-inhibition profiles remain difficult to predict. Using a Ret-kinase-driven Drosophila model of multiple endocrine neoplasia type 2 and kinome-wide drug profiling, here we identify that AD57 rescues oncogenic(More)
The disease-associated expansion of (CTG)*(CAG) repeats is likely to involve slipped-strand DNAs. There are two types of slipped DNAs (S-DNAs): slipped homoduplex S-DNAs are formed between two strands having the same number of repeats; and heteroduplex slipped intermediates (SI-DNAs) are formed between two strands having different numbers of repeats. We(More)
The vaccinia virus protein K3L subverts the mammalian antiviral defense mechanism by inhibiting the RNA-dependent protein kinase PKR. K3L is a structural mimic of PKR's natural substrate, the translation initiation factor eIF2alpha. To further our understanding of K3L inhibitory function and PKR substrate recognition, we have solved the 1.8 A X-ray crystal(More)
Kinases are highly regulated enzymes with diverse mechanisms controlling their catalytic output. Over time, chemical discovery efforts for kinases have produced ATP-competitive compounds, allosteric regulators, irreversible binders, and highly specific inhibitors. These distinct classes of small molecules have revealed many novel aspects about(More)
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its(More)
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated(More)
Mapping kinase-substrate interactions demands robust methods to rapidly and unequivocally identify substrates from complex protein mixtures. Toward this goal, we present a method in which a kinase, engineered to utilize synthetic ATPγS analogs, specifically thiophosphorylates its substrates in a complex lysate. The thiophosphate label provides a(More)