Paul G McGuire4
Sampathkumar Rangasamy2
Paul G. McGuire2
Finny Monickaraj2
4Paul G McGuire
2Sampathkumar Rangasamy
2Paul G. McGuire
2Finny Monickaraj
Learn More
Most anti-vascular endothelial growth factor (VEGF) therapies in diabetic macular edema are not as robust as in proliferative diabetic retinopathy. Although the VEGF appears to be a good target in diabetic macular edema, the anti-VEGF therapies appear to be of transient benefit as the edema recurs within a few weeks, and repeated injections are necessary.(More)
PURPOSE Hypoxia and growth factors are postulated to be involved in the development of retinal neovascularization through the regulation of extracellular proteinase production. It has been shown that matrix metalloproteinases (MMPs) are elevated in the retina during the neovascularization process. However, the factors and mechanisms that regulate the(More)
  • Sampathkumar Rangasamy, Paul G. McGuire, Carolina Franco Nitta, Finny Monickaraj, Sreenivasa R. Oruganti, Arup Das +1 other
  • 2014
Inflammation in the diabetic retina is mediated by leukocyte adhesion to the retinal vasculature and alteration of the blood-retinal barrier (BRB). We investigated the role of chemokines in the alteration of the BRB in diabetes. Animals were made diabetic by streptozotocin injection and analyzed for gene expression and monocyte/macrophage infiltration. The(More)
PURPOSE The purpose of this study was to determine the role of hepatocyte growth factor (HGF) and c-Met in the initiation and development of retinal neovascularization and to determine whether inhibition of this system can suppress the extent of angiogenesis in an animal model. METHODS Retinal tissues from animals with oxygen-induced neovascularization(More)
PURPOSE The objective of the study was to determine the role of urokinase (uPA) and the urokinase receptor (uPAR) in retinal angiogenesis, and whether loss of uPAR or the inhibition of uPA/uPAR interactions could suppress the extent of retinal neovascularization in an animal model of ischemic retinopathy. METHODS Retinal neovascularization was induced by(More)
The blood-retinal barrier (BRB) alteration is the hallmark feature of diabetic retinopathy. Vascular endothelial growth factor (VEGF) is a potent vasopermeability factor that has been implicated in the pathogenesis of BRB alteration. Inflammation also plays a crucial role in this process with involvement of several chemokines and cytokines. Multiple(More)