Learn More
RATIONALE The recent emergence of hydrogen sulfide (H(2)S) as a potent cardioprotective signaling molecule necessitates the elucidation of its cytoprotective mechanisms. OBJECTIVE The present study evaluated potential mechanisms of H(2)S-mediated cardioprotection using an in vivo model of pharmacological preconditioning. METHODS AND RESULTS H(2)S (100(More)
Clinical studies have reported that the widely used antihyperglycemic drug metformin significantly reduces cardiac risk factors and improves clinical outcomes in patients with heart failure. The mechanisms by which metformin exerts these cardioprotective effects remain unclear and may be independent of antihyperglycemic effects. We tested the hypothesis(More)
Hydrogen sulfide (H(2)S) is an endogenously produced gaseous signaling molecule with diverse physiological activity. The potential protective effects of H(2)S have not been evaluated in the liver. The purpose of the current study was to investigate if H(2)S could afford hepatoprotection in a murine model of hepatic ischemia-reperfusion (I/R) injury. Hepatic(More)
BACKGROUND Hydrogen sulfide (H(2)S) is an endogenous signaling molecule with potent cytoprotective effects. The present study evaluated the therapeutic potential of H(2)S in murine models of heart failure. METHODS AND RESULTS Heart failure was induced by subjecting mice either to permanent ligation of the left coronary artery for 4 weeks or to 60 minutes(More)
We fit the size distribution of liquid-ordered (L(o)) domains measured from fluorescence images of model cytoplasmic myelin monolayers with an equilibrium thermodynamic expression that includes the competing effects of line tension, λ, dipole density difference, Δm, and the mixing entropy. From these fits, we extract the line tension, λ, and dipole density(More)
A simple dilution method to determine the hydrodynamic volume fraction of vesicle suspensions is presented. The vesicle suspension is diluted with a solution containing a tracer Y, which is similar to a component X already present in the suspending fluid and which does not bind to or permeate through the vesicles. The concentrations of X and Y in the(More)
The existence of secondary flows in the pressure-driven flow of a concentrated suspension of noncolloidal particles through a conduit of square cross section under creeping flow conditions is confirmed experimentally. This Letter lends support to the idea that secondary currents, rather than shear-induced migration, may actually be the dominant mechanism(More)
Flow of soft matter objects through one-dimensional environments is important in industrial, biological and biomedical systems. Establishing the underlying principles of the behavior of soft matter in confinement can shed light on its performance in many man-made and biological systems. Here, we report an experimental and theoretical study of translocation(More)
The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by(More)
We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force−distance or energy−distance relationships characterizing adhesive interactions between fluid bilayers are routinely(More)