Learn More
Mixtures of dihydrocholesterol and phospholipids form immiscible liquids in monolayer membranes at the air-water interface under specified conditions of temperature and 2-dimensional pressure. In recent work it has been discovered that a number of these mixtures exhibit two upper miscibility critical points. Pairs of upper critical points can be accounted(More)
Mammalian cells control their membrane composition by regulating the vesicular transport of membrane-bound sterol regulatory element binding proteins (SREBPs) from endoplasmic reticulum (ER) to Golgi. Transport is blocked by cholesterol, which triggers SCAP, the SREBP escort protein, to bind to Insigs, which are ER retention proteins. The cholesterol(More)
Egress of lipoprotein-derived cholesterol from lysosomes requires two lysosomal proteins, polytopic membrane-bound Niemann-Pick C1 (NPC1) and soluble Niemann-Pick C2 (NPC2). The reason for this dual requirement is unknown. Previously, we showed that the soluble luminal N-terminal domain (NTD) of NPC1 (amino acids 25-264) binds cholesterol. This NTD is(More)
Cholesterol synthesis in animals is controlled by the regulated transport of sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum to the Golgi, where the transcription factors are processed proteolytically to release active fragments. Transport is inhibited by either cholesterol or oxysterols, blocking cholesterol synthesis.(More)
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that(More)
A handoff model has been proposed to explain the egress from lysosomes of cholesterol derived from receptor-mediated endocytosis of LDL. Cholesterol is first bound by soluble Niemann-Pick C2 (NPC2) protein, which hands off the cholesterol to the N-terminal domain of membrane-bound NPC1. Cells lacking NPC1 or NPC2 accumulate LDL-derived cholesterol in(More)
Recent studies have shown that cooperative interactions in endoplasmic reticulum (ER) membranes between Scap, cholesterol, and Insig result in switch-like control over activation of SREBP-2 transcription factors. This allows cells to rapidly adjust rates of cholesterol synthesis and uptake in response to even slight deviations from physiological set-point(More)
The polytopic membrane protein SCAP transports sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi, thereby activating cholesterol synthesis. Cholesterol accumulation in the ER membranes changes SCAP to an alternate conformation in which it binds ER retention proteins called Insigs, thereby terminating(More)
Epifluorescence microscopy studies of mixtures of phospholipids and cholesterol at the air-water interface often exhibit coexisting liquid phases. The properties of these liquids point to the formation of "condensed complexes" between cholesterol and certain phospholipids, such as sphingomyelin. It is found that monolayers that form complexes can(More)
Animal cells control their membrane lipid composition within narrow limits, but the sensing mechanisms underlying this control are largely unknown. Recent studies disclosed a protein network that controls the level of one lipid-cholesterol. This network resides in the endoplasmic reticulum (ER). A key component is Scap, a tetrameric ER membrane protein that(More)