Arturo Hernández-Cruz

Learn More
Correlated activity in cortico-basal ganglia circuits plays a key role in the encoding of movement, associative learning and procedural memory. How correlated activity is assembled by striatal microcircuits is not understood. Calcium imaging of striatal neuronal populations, with single-cell resolution, reveals sporadic and asynchronous activity under(More)
There is pharmacological evidence that Ca2+ channels play an essential role in triggering the mammalian sperm acrosome reaction, an exocytotic process required for sperm to fertilize the egg. Spermatozoa are small terminally differentiated cells that are difficult to study by conventional electrophysiological techniques. To identify the members of the(More)
Ca2+ entry through Ca2+ channels is likely to play an important role in the differentiation of male germ cells as well as in fertilization by mature sperm. Here we present a detailed analysis of Ca2+ currents expressed in acutely dissociated mouse primary spermatocytes. Patch-clamp recordings demonstrated that the only voltage-gated Ca2+ channels present(More)
We examined the temporal modulation of intracellular calcium release channels in the suprachiasmatic nucleus (SCN). We found a circadian rhythm in [3H]ryanodine binding that was specific to the SCN. The peak in the rhythm occurred at CT 7 and was due to an increase in Bmax, which correlated well with immunoblots showing an increase in RyR-2 expression in(More)
Neuronal synchronization in basal ganglia circuits plays a key role in the encoding of movement, procedural memory storage and habit formation. Striatal dopamine (DA) depletion during Parkinsonism causes abnormal synchronization in corticobasal ganglia loops resulting in motor dysfunction. However, the dynamics of the striatal microcircuit underlying(More)
The role of ryanodine-sensitive intracellular Ca2+ stores present in nonmuscular cells is not yet completely understood. Here we examine the physiological parameters determining the dynamics of caffeine-induced Ca2+ release in individual fura 2-loaded sympathetic neurons. Two ryanodine-sensitive release components were distinguished: an early, transient(More)
Intracellular Ca2+ regulates many fundamental physiological processes in excitable and non-excitable cells. Certainly this is the case of sperm where the local concentration of intracellular Ca2+ ([Ca2+]i) is significantly influenced by Ca2+ permeable channels present in the cell plasma membrane. Amongst these channels, the voltage dependent Ca2+ channels(More)
The most compelling evidence for a functional role of caffeine-sensitive intracellular Ca2+ reservoirs in nerve cells derives from experiments on peripheral neurons. However, the properties of their ryanodine receptor calcium release channels have not been studied. This work combines single-cell fura-2 microfluorometry, [3H]ryanodine binding and recording(More)
Modulation of high-threshold voltage-dependent calcium channels by neurotransmitters has been the subject of numerous studies in cultures of neurons and chromaffin cells. However, no studies on such modulation exist in chromaffin cells in their natural environment, the intact adrenal medullary tissue. Here we performed such a study in voltage-clamped(More)
Oxidative stress has been suggested as a mechanism contributing to neuronal death induced by hypoglycemia, and an early production of reactive species (RS) during the hypoglycemic episode has been observed. However, the sources of reactive oxygen (ROS) and nitrogen (RNS) species have not been fully identified. In the present study we have examined the(More)