Arturas Ziemys

Learn More
The C-terminal domain of BRCA1(BRCT) is involved in the DNA repair pathway by recognizing the pSXXF motif in interacting proteins. It has been reported that short peptides containing this motif bind to BRCA1(BRCT) in the micromolar range with high specificity. In this work, the binding of pSXXF peptides has been studied computationally and experimentally in(More)
BACKGROUND Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs) and N-aryl-N-hydroxy urethanes (AHUs) revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3-5 orders of magnitude less than for oxidation of physiological phenol(More)
NSAIDs have been observed to have cancer-preventive properties, but the actual mechanism is elusive. We hypothesize that NSAIDs might have an effect through common pathways and targets of anticancer drugs by exploiting promiscuities of anticancer drug targets. Here, we have explored NSAIDs by their structural and pharmacophoric similarities with small(More)
Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule(More)
  • M Ferrari, Arturas Ziemys, Psoc Member, Milos Kojic-Psoc, Mauro Member, Ferrari
  • 2015
— We describe multiscale transport model, which was developed to simulate drug diffusion and convection in tissues and drug vectors. Models rely on material properties and physical laws of transport. Our methods show that drug transport analysis may provide deep insight into mechanisms of pharmacokinetics useful in nanotherapeutics and transport study(More)
Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidase-catalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active(More)
  • 1