Artur Ratkiewicz

Learn More
We present an application of the chemical graph theory approach for generating elementary reactions of complex systems. Molecular species are naturally represented by graphs, which are identified by their vertices and edges where vertices are atom types and edges are bonds. The mechanism is generated using a set of reaction patterns (sub-graphs). These(More)
The kinetics of the 1,4-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using reaction class transition-state theory combined with the linear energy relationship (LER) and barrier height grouping (BHG) approach. The rate constants for the reference reaction of n-C(4)H(9) were obtained by canonical variational(More)
This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type OH + alkane --> HOH + alkyl. We have derived all parameters for the RC-TST method for this reaction class from rate constants of 19 representative reactions, coupling with linear energy(More)
This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the(More)
This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via(More)
Kinetics of the β-scission in alkyl radical reaction class was studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. All necessary parameters were derived from first-principle density functional calculations for a representative set of 21(More)
The neutron-deficient nucleus 107 Sn has been studied by using the one-neutron knockout reaction. By measuring the decay γ rays and momentum distributions of reaction residues, the spins of the ground, 5/2 + , and first-excited, 7/2 + , states of 107 Sn have been assigned by comparisons to eikonal-model reaction calculations. Limits on the inclusive and(More)
High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The(More)
The condensation of 16-dehydropregnenolone acetate with 2-aminobenzimidazole was studied. The polycyclic aromatic product was formed as a single regioisomer in a cascade reaction comprising addition, cyclization, autoxidation, and aromatization, in addition to the rearranged D-homo product. The reaction mechanism based on DFT calculations is proposed.