Learn More
Lysostaphin-type enzymes are metalloendopeptidases that are present in bacteriophages and in bacteria. They share the catalytic domain, but normally contain other domains as well. The well-characterized enzymes in this group are all specific for the pentaglycine crosslinks in the cell walls of some Gram-positive bacterial species. Lysostaphin-type enzymes(More)
Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in >2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the(More)
The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation,(More)
Neisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among(More)
Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes(More)
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside(More)
A new class of very potent inhibitors of cytosol leucine aminopeptidase (LAP), a member of the metalloprotease family, is described. The X-ray structure of bovine lens leucine aminopeptidase complexed with the phosphonic acid analogue of leucine (LeuP) was used for structure-based design of novel LAP inhibitors and for the analysis of their interactions(More)
Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed(More)
The influence of the substrate P1' position on the specificity of two zinc matrix metalloproteases, membrane type-1 matrix metalloprotease (MT1-MMP) and stromelysin-3 (ST3), was evaluated by synthesizing a series of fluorogenic substrates of general formula dansyl-Pro-Leu-Ala-Xaa-Trp-Ala-Arg-NH2, where Xaa in the P1' position represents unusual amino acids(More)
Several phosphinic pseudo-tripeptides of general formula R-XaaPsi(PO(2)-CH(2))Xaa'-Yaa'-NH(2) were synthesized and evaluated for their in vitro activities to inhibit stromelysin-3, gelatinases A and B, membrane type-1 matrix metalloproteinase, collagenases 1 and 2, and matrilysin. With the exception of collagenase-1 and matrilysin, phosphinic(More)