Learn More
A method is proposed for quantitative description of blood-vessel trees, which can be used for tree classification and/or physical parameters indirect monitoring. The method is based on texture analysis of 3D images of the trees. Several types of trees were defined, with distinct tree parameters (number of terminal branches, blood viscosity, input and(More)
MaZda, a software package for 2D and 3D image texture analysis is presented. It provides a complete path for quantitative analysis of image textures, including computation of texture features, procedures for feature selection and extraction, algorithms for data classification, various data visualization and image segmentation tools. Initially, MaZda was(More)
This paper presents an in-depth study of several approaches to exploratory analysis of wireless capsule endoscopy images (WCE). It is demonstrated that versatile texture and color based descriptors of image regions corresponding to various anomalies of the gastrointestinal tract allows their accurate detection of pathologies in a sequence of WCE frames.(More)
In this paper we propose and examine a Vector Supported Convex Hull method for feature subset selection. Within feature sub-spaces, the method checks locations of vectors belonging to one class with respect to the convex hull of vectors belonging to the other class. Based on such analysis a coefficient is proposed for evaluation of sub-space discrimination(More)
Visual discrimination between barley varieties is difficult, and it requires training and experience. The development of automatic methods based on computer vision could have positive implications for the food processing industry. In the brewing industry, varietal uniformity is crucial for the production of high quality malt. The varietal purity of(More)
In this paper a design of a computer simulator of susceptibility weighted imaging (SWI) protocol is presented. The ultimate application of the proposed system is to provide a framework for quantitative validation of SWI image processing algorithms. SWI is based on field non-uniformity caused by local susceptibility distribution and thus resulting in both(More)
With the development of medical imaging modalities and image processing algorithms, there arises a need for methods of their comprehensive quantitative evaluation. In particular, this concerns the algorithms for vessel tracking and segmentation in magnetic resonance angiography images. The problem can be approached by using synthetic images, where true(More)
This study aims to establish a numerical framework for validation of methods of quantitative analysis of non-invasive MR angiography imaging protocols such as Time-of-Flight (ToF) and Phase Contrast Angiography (PCA). In consequence, it is expected to reliably and objectively verify blood flow and volume measurements derived from image data. The blood flow(More)