Artur J. Ulmer

Learn More
Endotoxins of Gram-negative microbes fulfill as components of the outer membrane a vital function for bacterial viability and, if set free, induce in mammalians potent pathophysiological effects. Chemically, they are lipopolysaccharides (LPS) consisting of an O-specific chain, a core oligosaccharide, and a lipid component, termed lipid A. The latter(More)
To rapidly respond to invading microorganisms, humans call on their innate immune system. This occurs by microbe-detecting receptors, such as CD14, that activate immune cells to eliminate the pathogens. Here, we link the lipopolysaccharide receptor CD14 with Alzheimer's disease, a severe neurodegenerative disease resulting in dementia. We demonstrate that(More)
The glycosylphosphatidylinositol-anchored receptor CD14 plays a major role in the inflammatory response of monocytes to lipopolysaccharide. Here, we describe that ceramide, a constituent of atherogenic lipoproteins, binds to CD14 and induces clustering of CD14 to co-receptors in rafts. In resting cells, CD14 was associated with CD55, the Fcgamma-receptors(More)
Lipoproteins or lipopeptides (LP) are bacterial cell wall components detected by the innate immune system. For LP, it has been shown that TLR2 is the essential receptor in cellular activation. However, molecular mechanisms of LP recognition are not yet clear. We used a FLAG-labeled derivative of the synthetic lipopeptide(More)
TLR are primary triggers of the innate immune system by recognizing various microorganisms through conserved pathogen-associated molecular patterns. TLR2 is the receptor for a functional recognition of bacterial lipopeptides (LP) and is up-regulated during various disorders such as chronic obstructive pulmonary disease and sepsis. This receptor is unique in(More)
Endotoxin (lipopolysaccharide, LPS), a constitutent of the outer membrane of the cell wall of gramnegative bacteria, exerts a wide variety of biological effects in humans. This review focuses on the molecular mechanisms underlying these activities and discusses structure-function relationships of the endotoxin molecule, its interaction with humoral and(More)
Bacterial lipoproteins/peptides are composed of di-O-acylated-S-(2,3-dihydroxypropyl)-cysteinyl residues N-terminally coupled to distinct polypeptides, which can be N-acylated with a third fatty acid. Using a synthetic lipopeptide library we characterized the contribution of the lipid portion to the TLR2 dependent pattern recognition. We found that the two(More)
OBJECTIVE Blood levels of cytokines are commonly elevated in severe congestive heart failure (CHF) and in coronary artery disease (CAD). While the adverse effects of cytokines on contractile function and myocardial cell integrity are well studied, little is known on whether cardiac cells are only targets or active players in these inflammatory reactions. (More)
Bacterial cell walls contain lipoproteins/peptides, which are strong modulators of the innate immune system. Triacylated lipopeptides are assumed to be recognized by TLR2/TLR1-, whereas diacylated lipopeptides use TLR2/TLR6 heteromers for signaling. Following our initial discovery of TLR6-independent diacylated lipopeptides, we could now characterize di-(More)