Learn More
Numerous anthropogenic chemicals of environmental concern--including some phenoxy acid herbicides, organophosphorus insecticides, polychlorinated biphenyls, phthalates, freon substitutes and some DDT derivatives--are chiral. Their potential biological effects, such as toxicity, mutagenicity, carcinogenicity, and endocrine disrupter activity, are generally(More)
The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (Elodea canadensis). The decay profile of these OP pesticides from the aqueous(More)
The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aqueous culture medium followed first-order kinetics for all three plants. During(More)
Fipronil is a phenylpyrazole insecticide used in agricultural and domestic settings for controlling various insect pests in crops, lawns, and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this study, the acute toxicity of the (S,+) and (R,-) enantiomers and the racemic(More)
Fipronil is a phenylpyrazole insecticide increasingly used in applications such as rice culture, turf grass management, and residential pest control, with a high probability to contaminate aquatic environments. As a chiral pesticide, fipronil is released to the environment as a racemic mixture (equal amounts of optical isomers called enantiomers).(More)
There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to dietary concentrations of a mixture of chiral(More)
The enantiomeric composition of polychlorinated biphenyl (PCB) atropisomers was measured in river and riparian biota (fish, bivalves, crayfish, water snakes, barn swallows) from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic enantiomeric fractions (EFs) were observed for PCBs 91, 95, 136, and 149(More)
There is evidence that polychlorinated biphenyl (PCB) congeners with ortho chlorine substituents have potential to cause neurotoxicity. Many PCB congeners implicated in these neurotoxic effects are chiral. It is currently unknown if the enantiomers of chiral PCB congeners have different neurotoxic effects. We herein report the effect of racemic(More)