Arthur O'Hare

Learn More
Bit-error-rate assessment of a multi-rate all-optical clock recovery (OCR) based on a narrow linewidth mode-locked quantum-dot (QD) Fabry-Perot laser is presented in this letter. OCR has been achieved without external feedback. We use a QD Fabry-Perot semiconductor laser designed for 40-GHz clock extraction. We then present OCR performance with 40-, 80-,(More)
We assess a new 2R regenerator based on a microcavity saturable absorber and a semiconductor optical amplifier. Cascadability is demonstrated and the impact of regeneration span is studied in a 10-Gb/s two-path recirculating loop. A wavelength study demonstrates the tunability of the device over 13 nm
The limitations owing to device heating and thermo-optic effects in high-speed quantum-well microcavity saturable absorber devices are investigated both theoretically and experimentally. A simplified theoretical description of the device electronic, thermal, and optical properties is developed and applied to the modeling of the device switching(More)
This paper gives an overview of recent demonstrations of optical 2R regeneration achieved by vertical microcavity mirror-based multiple-quantum-well saturable absorber (SA). The potential of the device to perform wavelength division multiplexing regeneration is first demonstrated through the first pigtailed SA chip implemented with eight independent fibers(More)
In this paper, we present a complete study of the pattern sequence length influence in the optical clock recovery (OCR) process using passive filtering. For this analysis, we use a commercial Fabry-Perot filter (FPF) in front of a semiconductor optical amplifier. A 40-GHz optical clock is then recovered from an optical data stream at 40 Gbit/s. The(More)
We report on a passive all-optical clock recovery technique based on data signal filtering with a Fabry-Perot filter, tested in a 40 Gb/s transmission system. We have simulated the clock recovery principle to choose the filter finesse and then investigate with experiment the method for 43 Gbit/s RZ signal clock recovery ahead of a receiver. We use Bit Error(More)