Learn More
Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid beta-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified.(More)
Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr(More)
Asymmetric intracellular signals enable cells to migrate in response to external cues. The multiprotein WAVE (also known as SCAR or WASF) complex activates the actin-nucleating Arp2/3 complex [1-4] and localizes to propagating "waves," which direct actin assembly during neutrophil migration [5, 6]. Here, we observe similar WAVE complex dynamics in other(More)
Asymmetric localization of intracellular proteins and signals directs movement during axon guidance, endothelial cell invasion, and immune cell migration. In these processes, cell movement is guided by external chemical cues in a process known as chemotaxis. In particular, leukocyte migration in the innate immune system has been studied in the human(More)
Many cells undergo directed cell migration in response to external cues in a process known as chemotaxis. This ability is essential for many single-celled organisms to hunt and mate, the development of multicellular organisms, and the functioning of the immune system. Because of their relative ease of manipulation and their robust chemotactic abilities, the(More)
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes,(More)
A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput(More)
  • 1