Learn More
Classic studies have recognized neurons and three glial elements in the central nervous system (CNS) - astrocytes, oligodendrocytes and microglia. The identification of novel glia that specifically express the NG2 chondroitin sulphate proteoglycan (CSPG) raises the possibility of a fifth element. Until recently, all NG2-expressing glia were considered to be(More)
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular(More)
The NG2 antibody, which recognises an integral membrane chondroitin sulphate, labels a significant population of cells in adult CNS white matter tracts of the rat optic nerve and anterior medullary velum (AMV). Adult NG2+ cells are highly complex with multiple branching processes and we show by EM immunocytochemistry that they extend perinodal processes,(More)
The three-dimensional morphology of astrocytes and oligodendrocytes was analysed in the isolated intact mature mouse optic nerve, by correlating laser scanning confocal microscopy and camera lucida drawings of single cells, dye-filled with lysinated rhodamine dextran or horseradish peroxidase, respectively. These techniques enabled the entire process field(More)
Activation of purinoceptors by extracellular ATP is an important component of the glial response to injury in the central nervous system (CNS). ATP has been shown to evoke raised cytosolic [Ca(2+)] in astrocytes, oligodendrocytes, and microglia, the three major glial cell types in the CNS. Glial cells express a heterogenous collection of metabotropic P2Y(More)
Glycogen synthase kinase 3β (GSK3β) is an essential integrating molecule for multiple proliferation and differentiation signals that regulate cell fate. Here, we have examined the effects of inhibiting GSK3β on the development of oligodendrocytes (OLs) from their oligodendrocyte precursors (OP) in vivo by injection into the lateral ventricle of postnatal(More)
Oligodendrocytes, the myelinating cells of the CNS, are derived postnatally from oligodendrocyte precursors (OPs) of the subventricular zone (SVZ). However, the mechanisms that regulate their generation from SVZ neural stem cells (NSC) are poorly understood. Here, we have examined the role of glycogen synthase kinase 3β (GSK3β), an effector of multiple(More)
1. Ion permeability of the blood-brain barrier was studied by in situ measurement of transendothelial electrical resistance in anaesthetized rats aged between 17 days gestation and 33 days after birth, and by electron microscopic examination of lanthanum permeability in fetal and neonatal rats aged up to 10 days old. 2. The blood-brain barrier in 17- to(More)
Neurotransmitters released at synapses mediate Ca2+ signaling in astrocytes in CNS grey matter. Here, we show that ATP and glutamate evoke these Ca2+ signals in white matter astrocytes of the mouse optic nerve, a tract that contains neither neuronal cell bodies nor synapses. We further demonstrate that action potentials along white matter axons trigger the(More)
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is(More)