Arthur Knoek J Van Soest

Learn More
In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic energy to the enhancement of performance in CMJ compared with(More)
Several types of equilibrium point (EP) controllers have been proposed for the control of posture and movement. EP controllers are appealing from a computational perspective because they do not require solving the "inverse dynamic problem" (i.e., computation of the torques required to move a system along a desired trajectory). It has been argued that EP(More)
A parallel genetic algorithm for optimization is outlined, and its performance on both mathematical and biomechanical optimization problems is compared to a sequential quadratic programming algorithm, a downhill simplex algorithm and a simulated annealing algorithm. When high-dimensional non-smooth or discontinuous problems with numerous local optima are(More)
Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model,(More)
It is well documented that muscle fibers become more sensitive for [Ca2+] with increasing sarcomere length. In mechanical terms this length-dependent [Ca2+] sensitivity (LDCS) adds to the stiffness of muscle fibers, because muscle force, normalized for the force-length relationship at maximal stimulation, increases with contractile element (CE) length.(More)
This study investigates the influence of parameter values of the human triceps surae muscle on the torque-angle relationship. The model used consisted of three units, each containing a contractile, a series elastic and a parallel elastic element. Parameter values were based on morphological characteristics, which made it possible to model individual units.(More)
Direct dynamics computer simulation is gaining importance as a research tool in the biomechanical study of complex human movements. Therefore, the need for general-purpose software packages with which the equations of motion can be derived automatically and solved numerically is growing. In this paper such a method is described: SPACAR. The method is(More)
1. Humans can execute explosive movements such as jumping and hitting an object irrespective of the starting position from which these movements have to be initiated; in fact, variability of kinematic parameters has been shown to decrease in the course of the movement. 2. We address the question of whether it is necessary to adapt the stimulation pattern of(More)
PURPOSE In rowing, the athlete has to maximize power output and to minimize energy losses to processes unrelated to average shell velocity. The contribution of velocity efficiency (evelocity; the fraction of mechanical power not lost to velocity fluctuations) to rowing performance in relation to the contributions of maximum oxygen uptake (V[spacing dot(More)
In the literature, it has been hotly debated whether the brain uses internal models or equilibrium point (EP) control to generate arm movements. EP control involves specification of EP trajectories, time series of arm configurations in which internal forces and external forces are in equilibrium; if the arm is not in a specified EP, it is driven toward this(More)