Arthur Creane

Learn More
Accurate characterisation of the mechanical properties of human atherosclerotic plaque is important for our understanding of the role of vascular mechanics in the development and treatment of atherosclerosis. The majority of previous studies investigating the mechanical properties of human plaque are based on tests of plaque tissue removed following(More)
Inelastic phenomena such as softening and unrecoverable inelastic strains induced by loading have been observed experimentally in soft tissues such as arteries. These phenomena need to be accounted for in constitutive models of arterial tissue so that computational models can accurately predict the outcomes of interventional procedures such as balloon(More)
Little mechanical test data exists regarding the inelastic behavior of atherosclerotic plaques. As a result finite element (FE) models of stenting procedures commonly use hyperelastic material models to describe the soft tissue response thus limiting the accuracy of the model to the expansion stage of stent implantation and leave them unable to predict the(More)
Many studies have used patient-specific finite element models to estimate the stress environment in atherosclerotic plaques, attempting to correlate the magnitude of stress to plaque vulnerability. In complex geometries, few studies have incorporated the anisotropic material response of arterial tissue. This paper presents a fibre remodelling algorithm to(More)
Understanding the mechanical behaviour of arterial tissue is vital to the development and analysis of medical devices targeting diseased vessels. During angioplasty and stenting, stress softening and permanent deformation of the vessel wall occur during implantation of the device, however little data exists on the inelastic behaviour of cardiovascular(More)
Characterization of the mechanical properties of arterial tissues usually involves an invasive procedure requiring tissue removal. In this work we propose a non-invasive method to perform a biomechanical analysis of cardiovascular aortic tissue. This method is based on combining medical imaging and finite element analysis (FEA). Magnetic resonance imaging(More)
It has been hypothesised that the stress distribution within the arterial wall may provide an indicator of atherosclerotic plaque rupture. This study presents an automated method for the generation of finite element models of the carotid bifurcation from in vivo computerised tomographic angiography. Models generated using this method have been used to(More)
Many soft biological tissues contain collagen fibres, which act as major load bearing constituents. The orientation and the dispersion of these fibres influence the macroscopic mechanical properties of the tissue and are therefore of importance in several areas of research including constitutive model development, tissue engineering and mechanobiology.(More)
  • 1