Arthur C. Graesser

Learn More
The advent of software agents gave rise to much discussion of just what such an agent is, and of how they differ from programs in general. Here we propose a formal definition of an autonomous agent which clearly distinguishes a software agent from just any program. We also offer the beginnings of a natural kinds taxonomy of autonomous agents, and discuss(More)
Advances in computational linguistics and discourse processing have made it possible to automate many language- and text-processing mechanisms. We have developed a computer tool called Coh-Metrix, which analyzes texts on over 200 measures of cohesion, language, and readability. Its modules use lexicons, part-of-speech classifiers, syntactic parsers,(More)
The authors describe a constructionist theory that accounts for the knowledge-based inferences that are constructed when readers comprehend narrative text. Readers potentially generate a rich variety of inferences when they construct a referential situation model of what the text is about. The proposed constructionist theory specifies that some, but not(More)
Whereas it is well documented that student question asking is infrequent in classroom environments, there is little research on questioning processes during tutoring. The present study investigated the questions asked in tutoring sessions on research methods (college students) and algebra (7th graders). Student questions were approximately 240 times as(More)
AutoTutor is a learning environment that tutors students by holding a conversation in natural language. AutoTutor has been developed for Newtonian qualitative physics and computer literacy. Its design was inspired by explanation-based constructivist theories of learning, intelligent tutoring systems that adaptively respond to student knowledge, and(More)
The role that affective states play in learning was investigated from the perspective of a constructivist learning framework. We observed six different affect states (frustration, boredom, flow, confusion, eureka and neutral) that potentially occur during the process of learning introductory computer literacy with AutoTutor, an intelligent tutoring system(More)
We study the incidence (rate of occurrence), persistence (rate of reoccurrence immediately after occurrence), and impact (effect on behavior) of students’ cognitive-affective states during their use of three different computer-based learning environments. Students’ cognitive-affective states are studied using different populations (Philippines, USA),(More)
We explored the reliability of detecting a learner’s affect from conversational features extracted from interactions with AutoTutor, an intelligent tutoring system (ITS) that helps students learn by holding a conversation in natural language. Training data were collected in a learning session with AutoTutor, after which the affective states of the learner(More)
AutoTutor is a computer tutor that simulates the discourse patterns and pedagogical strategies of a typical human tutor. AutoTutor is designed to assist college students in learning the fundamentals of hardware, operating systems, and the Internet in an introductory computer literacy course. Most tutors in school systems are not highly trained in tutoring(More)