Learn More
This study aimed at developing a whole cell based high throughput screening protocol to identify inhibitors against both active and dormant tubercle bacilli. A respiratory type of nitrate reductase (NarGHJI), which was induced during dormancy, could reflect the viability of dormant bacilli of Mycobacterium bovis BCG in microplate adopted model of in vitro(More)
Voxelation allows high-throughput acquisition of multiple volumetric images of brain gene expression, similar to those obtained from biomedical imaging systems. To obtain these images, the method employs analysis of spatially registered voxels (cubes). For creation of high-resolution maps using voxelation, relatively small voxel sizes are necessary and(More)
We describe a microarray design based on the concept of error-correcting codes from digital communication theory. Currently, microarrays are unable to efficiently deal with "drop-outs," when one or more spots on the array are corrupted. The resulting information loss may lead to decoding errors in which no quantitation of expression can be extracted for the(More)
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the(More)
To facilitate high-throughput 3D imaging of brain gene expression, a new method called voxelation has been developed. Spatially registered voxels (cubes) are analyzed, resulting in multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems. Using microarrays, 40 voxel images for 9000 genes were acquired(More)
Voxelation is a new method for acquisition of three dimensional (3D) gene expression patterns in the brain. It employs high-throughput analysis of spatially registered voxels (cubes) to produce multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems. Using microarrays, 24 voxel images of coronal(More)
The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson's disease (PD) are not completely understood. Here, we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(More)
Challenges associated with the efficient and effective preparation of micro- and nanoscale (micro- and nanogram) clinical specimens for proteomic applications include the unmitigated sample losses that occur during the processing steps. Herein, we describe a simple "single-tube" preparation protocol appropriate for small proteomic samples using the organic(More)
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing(More)
Identification of behavioral loci through complex trait mapping remains a widely employed approach but suffers from poor gene localization and low replicability. Genome-tagged mice (GTMs) are overlapping sets of congenic strains spanning the whole genome and offer the possibilities of superior mapping power and reproducibility. In this study, three GTM(More)