Arseniy Borysov

Learn More
The low level of ambient glutamate is important for the brain's spontaneous activity and proper synaptic transmission. Cholesterol deficiency has been implicated in the pathogenesis of several neurodegenerative disorders. It was examined whether membrane cholesterol modulated the extracellular glutamate level in nerve terminals and the processes responsible(More)
AIM To analyze the neurotoxic potential of synthesized magnetite nanoparticles coated by dextran, hydroxyethyl starch, oxidized hydroxyethyl starch, and chitosan, and magnetic nanoparticles combined with ferritin as a native protein. METHODS The size of nanoparticles was analyzed using photon correlation spectroscopy, their effects on the conductance of(More)
The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of l-[14C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately(More)
Extracellular/intracellular l-[14C]glutamate exchange and conservativeness of the extracellular level of l-[14C]glutamate was analyzed in isolated rat brain nerve terminals. l-Glutamate-, dl-threo-β-hydroxyaspartate (dl-THA)-, and d-aspartate-induced increase in the ambient level of l-[14C]glutamate or d-[3H]aspartate was evaluated comparatively. 100 μM(More)
Exposure to Cd(2+) and Pb(2+) has neurotoxic consequences for human health and may cause neurodegeneration. The study focused on the analysis of the presynaptic mechanisms underlying the neurotoxic effects of non-essential heavy metals Cd(2+) and Pb(2+). It was shown that the preincubation of rat brain nerve terminals with Cd(2+) (200 μM) or Pb(2+) (200 μM)(More)
The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central(More)
  • 1