Learn More
The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine. However, microalgal biotechnology only really began to develop in the middle of the last century. Nowadays, there are numerous commercial applications of microalgae. For example, (i) microalgae can be used to enhance the nutritional value of(More)
The industrial crops of microalgae use processes calling upon the presence of parts of metal nature such as steel 316L type. The goal of this study is to test the electrochemical behavior of this material in a marine culture of microalgae. Porphyridium purpureum was used under a photoperiod of alternation darkness/light 12/12 h, in order to apprehend the(More)
This paper presents a nonlinear predictive control (NMPC) strategy applied to the continuous microalgae cultivation process in a closed photobioreactor. The photo-bioreactor system is programmed to operate in a constant biomass density mode, in order to maintain the culture at the optimal population density and sustain high biomass production levels. This(More)
This paper addresses a study of the regulation of the biomass density in a closed microalgal photobioreactor by using a linearizing control approach. The photobioreactor system was programmed to operate in a constant biomass density mode, in order to maintain the culture at the optimal population density and sustaining high biomass production levels. The(More)
Microalgae consume carbon dioxide for their growth and to produce secondary metabolites. One of the control system challenges is to maximize this carbon dioxide consumption by controlling microalgae growth, and by maintaining its growth rate at an optimal value. However, there is no such thing as a microalgae growth rate sensor. This paper proposes a(More)
  • 1