Arrate Muñoz-Barrutia

Learn More
It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate(More)
MOTIVATION Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this(More)
In this article, we present a novel method for the automatic 3D reconstruction of thick tissue blocks from 2D histological sections. The algorithm completes a high-content (multiscale, multifeature) imaging system for simultaneous morphological and molecular analysis of thick tissue samples. This computer-based system integrates image acquisition,(More)
BACKGROUND We aimed to analyze the diagnostic accuracy of an automated segmentation and quantification method of the SNc and locus coeruleus (LC) volumes based on neuromelanin (NM)-sensitive MRI (NM-MRI) in patients with idiopathic (iPD) and monogenic (iPD) Parkinson's disease (PD). METHODS Thirty-six patients (23 idiopathic and 13 monogenic PARKIN or(More)
The continuous wavelet transform (CWT) is a common signal-processing tool for the analysis of nonstationary signals. We propose here a new B-spline-based method that allows the CWT computation at any scale. A nice property of the algorithm is that the computational cost is independent of the scale value. Its complexity is of the same order as that of the(More)
The accurate estimation of the number and size of cells provides relevant information on the kinetics of growth and the physiological status of a given tissue or organ. Here, we present Adiposoft, a fully automated open-source software for the analysis of white adipose tissue cellularity in histological sections. First, we describe the sequence of image(More)
We present an optimal spline-based algorithm for the enlargement or reduction of digital images with arbitrary (noninteger) scaling factors. This projection-based approach can be realized thanks to a new finite difference method that allows the computation of inner products with analysis functions that are B-splines of any degree n. A noteworthy property of(More)
We present a novel algorithm for the registration of 2D image sequences that combines the principles of multiresolution B-spline-based elastic registration and those of bidirectional consistent registration. In our method, consecutive triples of images are iteratively registered to gradually extend the information through the set of images of the entire(More)
Methods based on combinatorial graph cut algorithms received a lot of attention in the recent years for their robustness as well as reasonable computational demands. These methods are built upon an underlying Maximum a Posteriori estimation of Markov Random Fields and are suitable to solve accurately many different problems in image analysis, including(More)
We propose a new technique to perform nonuniform to uniform grid conversion: first, interpolate using nonuniform splines, then project the resulting function onto a uniform spline space and finally, resample. We derive a closed form solution to the least-squares approximation problem. Our implementation is computationally exact and works for arbitrary(More)