Learn More
T cells are critical for clearing infection and preventing tumors induced by polyoma virus, a natural murine papovavirus. We previously identified the immunodominant epitope for polyoma virus-specific CTL in tumor-resistant H-2k mice as the Dk-restricted peptide, MT389-397, derived from the polyoma middle T oncoprotein. In this study, we developed(More)
Cloned lines of murine cytotoxic T lymphocytes (CTL) directed to type A influenza virus confer complete protection upon adoptive transfer to syngeneic mice lethally infected by influenza virus. The exquisite specificity exhibited by a subtype-specific cloned CTL in culture is reflected in its capacity to eliminate pulmonary virus and mediate recovery only(More)
Numerous microbes establish persistent infections, accompanied by antigen-specific CD8 T cell activation. Pathogen-specific T cells in chronically infected hosts are often phenotypically and functionally variable, as well as distinct from T cells responding to nonpersistent infections; this phenotypic heterogeneity has been attributed to an ongoing(More)
We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently(More)
For viruses that establish persistent infection, continuous immunosurveillance by effector-competent antiviral CD8(+) T cells is likely essential for limiting viral replication. Although it is well documented that virus-specific memory CD8(+) T cells synthesize cytokines after short term in vitro stimulation, there is limited evidence that these T cells(More)
Although immunity against intracellular pathogens is primarily provided by CD8 T lymphocytes that recognize pathogen-derived peptides presented by major histocompatibility complex (MHC) class Ia molecules, MHC class Ib-restricted CD8 T cells have been implicated in antiviral immunity. Using mouse polyoma virus (PyV), we found that MHC class Ia-deficient(More)
Polyoma virus is a potent oncogenic pathogen when inoculated into newborn mice of particular H-2(k) strains. Using D(k) tetramers containing the dominant antipolyoma CD8(+) T cell epitope, middle T protein (MT)389-397, and intracellular interferon gamma staining, we enumerated MT389-specific CD8(+) T cells in infected neonates having opposite(More)
A dominant gene carried in certain inbred mouse strains confers susceptibility to tumors induced by polyoma virus. This gene, designated Pyvs, was defined in crosses between the highly susceptible C3H/BiDa strain and the highly resistant but H-2k-identical C57BR/cdJ strain. The resistance of C57BR/cdJ mice is overcome by irradiation, indicating an(More)
Control of persistently infecting viruses requires that antiviral CD8(+) T cells sustain their numbers and effector function. In this study, we monitored epitope-specific CD8(+) T cells during acute and persistent phases of infection by polyoma virus, a mouse pathogen that is capable of potent oncogenicity. We identified several novel polyoma-specific(More)
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8 + T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and(More)